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Abstract

We use a path-integral generalization of Euler’'s theorem to decompose the predictive
accuracy of binary classification models, measured by improvement in expected log loss.
Relative to a constant-probability baseline, this improvement admits an exact additive
decomposition across components of the fitted score, yielding a principled notion of
feature importance as contribution to global predictive fit.

Because log loss is nonlinear in the score, an exact decomposition requires averaging
the canonical residual, the derivative of log loss with respect to the score, along the path
from the baseline score to the fitted score. The resulting attribution is exact and does not
rely on optimality conditions or local approximations. Specializing to logistic regression,
the natural components are f;x;, directly mirroring the fitted-value decomposition in linear
regression.

In this framework, a component contributes positively to predictive performance if it
moves the fitted score closer to the outcome, either by directly explaining the outcome or
by offsetting misalignment introduced by other components.
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1 Introduction

We develop an additive decomposition of model fit for binary classification
models. We extend the Euler decomposition of explained signal strength
in regression models proposed by Hentschel (2026b) to settings with binary
outcomes y € {0, 1} and fitted probabilistic predictions p € (0, 1).

We define feature importance as a model-conditional attribution of pre-
dictive fit, measured by the improvement in expected log loss relative to a
constant-probability baseline. This definition attributes performance within
the fitted model itself, rather than to marginal associations, local sensitivities,
or counterfactual feature removal.

In linear regression, the reduction in mean squared error admits an exact
Euler decomposition because it is homogeneous in the fitted signal. In
classification models, squared error loss does not provide a natural measure
of fit. Probabilistic classification models instead evaluate predictions using
log loss, a proper scoring rule. Because log loss is nonlinear in the fitted score,
a direct Euler decomposition does not apply, and variance-based regression
results do not extend mechanically. We address this nonlinearity by averaging
the canonical residual along the path from the baseline score to the fitted score.
This construction yields an exact, additive, and computationally tractable
attribution.

Our analysis focuses on the fitted predictions themselves and does not
depend on the estimation procedure that produced them. We derive the
decomposition without invoking optimality conditions, likelihood equations,
or refitting-based arguments. Under log loss, the decomposition admits a
closed-form expression and retains the key advantages of the regression case:
additivity, interpretability, and low computational cost.

We also derive standard errors for the Euler contributions that reflect sam-
pling variability in the data. These standard errors allow us to assess whether
observed variation in feature contributions across samples or over time
plausibly reflects noise or instead indicates changes in predictive relevance.

A large literature proposes feature importance measures based on coeffi-
cients, perturbation or permutation schemes, and Shapley-value attributions.
These methods address important but different questions, including sensitiv-
ity of predictions to inputs, robustness to feature removal, and explanation of
individual predictions. In contrast, we focus on decomposing a fitted model’s
global predictive fit. Section 3 provides a detailed comparison with existing
approaches.

The remainder of the paper proceeds as follows. Section 2 develops
improvement in log loss relative to a baseline model as a measure of clas-
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sification fit and derives the core Euler-style decomposition of this model
fit. Section 3 compares the proposed decomposition to existing feature-
importance measures. Section 4 concludes. The appendices discuss the
path-integral generalization of EulerOs theorem, standard errors for the
feature contributions, the extension to multinomial classification, and the
computational algorithm for the decomposition.

2 Decomposing Model Fit in Binary Classification
This section develops the core decomposition of predictive fit for binary
classification models. We begin by formalizing model fit using log loss and
defining explained fit relative to a constant-probability baseline. We then
derive an exact, additive decomposition of this explained fit at the level of
fitted score components, discuss extensions to weighted evaluation, and
interpret the resulting contributions as measures of feature importance. The
section concludes by specializing the general framework to logistic regression,

where the decomposition takes a particularly transparent form.

2.1 Log Loss as a Measure of Classification Fit

We measure model fit using improvement in expected log loss rather than
threshold-based classification accuracy. In probabilistic classification, log
loss plays the same conceptual role as explained variance in regression: it
evaluates how well a model explains outcomes relative to a baseline, rather
than how often it produces correct classifications at an arbitrary threshold.

Log loss is a strictly proper scoring rule for binary outcomes: the expected
loss is uniquely minimized when the predicted probability equals the true
conditional probability Gneiting and Raftery (2007). As a result, log loss
evaluates the quality of probabilistic predictions directly, rewards calibration,
and admits well-defined population expectations.

These properties distinguish log loss from threshold-dependent metrics
such as accuracy or F1, and from rank-based measures such as AUC. Such
metrics do not evaluate probabilistic forecasts directly and do not support
additive decompositions of model fit. By contrast, log loss aggregates addi-
tively across observations and is therefore well suited to the decomposition
developed in this paper.

We evaluate model fit using the log loss

{(y,p) = ~ylogp — (1 -y)log(1l~-p). 1)

Although log loss coincides with the negative log likelihood for Bernoulli
models, we use it here purely as an evaluation metric. The decomposition
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applies to any classification model that produces probabilistic predictions,
regardless of how those predictions were constructed.

2.2 Baseline Model and Explained Log Loss
As in regression, we define explained fit relative to a constant baseline
model. We take this baseline to be the unconditional class probability
7 = E[y], corresponding to an intercept-only model. This choice is directly
analogous to centering the dependent variable in regression: if the baseline
is misspecified, the notion of explained fit itself becomes ambiguous.

We define explained log loss as the reduction in expected log loss relative
to this baseline,

AL =E[t(y,p)] - E[t(y, p))- @

This quantity is the natural classification analogue of explained variance. It
measures how much predictive information the fitted model captures beyond
unconditional class frequencies.

2.3 A Model-Level Decomposition
Define the log score

fly, M) =y —log(1+eM), 3)

where 7 denotes the fitted score (log-odds) associated with the predicted
probability p = o(1). Let ) = log(p/(1 — p)) denote the baseline score. The

improvement in model fit can be written as

AL =E[f(y,n) - fly, D] (4)

Although the logistic function a(n) = 1/(1 + ¢") is commonly associated
with logistic regression estimation, it enters our analysis solely through the
choice of log loss as the evaluation metric. The decomposition therefore
depends only on the form of the scoring rule and the fitted scores, and not
on the estimation procedure or objective function that produced them.

In linear regression with squared error loss, homogeneity of the loss
function allows the improvement in fit to be decomposed by direct application
of Euler’s theorem.! For log loss, this property no longer holds: the log score is
not homogeneous of degree one in the fitted score 7. As a result, an endpoint
evaluation of the score derivative does not yield an exact decomposition of
global model fit.

1 See Silberberg (1978) or Tasche (2008).
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Instead, we apply the fundamental theorem of calculus along the straight-
line path from the baseline score 7 to the fitted score 77 on the score scale. For
each observation,

1
— d -~ =
F = fy i = [ Al T+ G- d ©
1
= G- [ (y=oli+ =) dr. ©
Appendix A shows that this decomposition is the natural generalization of
Euler’s theorem when homogeneity fails: endpoint derivatives are replaced

by averages of the directional derivative along a path.

Now, assume the fitted score admits an additive representation
K
j=1

Substituting this representation yields an additive decomposition of the

log-loss improvement,
K
AL = Z Cj, 8
with component contributions

1
¢i=2[f [ tv-om+iG-m) | ©

For log loss, the path integral admits a closed-form solution because
the loss is generated by a convex log-partition function. We retain the
integral representation to make explicit the nonlinear geometry underlying
the additive decomposition. For log loss, the closed-form contributions are

Ci=E|nily (10)

n=n

- ( B log(1 + eﬁ) —log(1 + e”))]

with the ratio interpreted by continuity as o(77) when 7 = 7. This closed form
preserves exact additivity while avoiding numerical integration.

The contribution C; measures how much the score component 7; shifts
predicted probability mass in regions where the model is still uncertain about
the outcome. Each component is weighted not by its raw magnitude, but by
how strongly it aligns with residual predictive uncertainty, averaged along
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Figure 1: Logistic Residual vs. Score and the Path Integral
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The figure illustrates the path-integral calculation used to attribute model fit to a single score
component. The plot shows the canonical residual y — o(1)) as a function of the score 1 for a
single observation with y = 1, a baseline score 77 = 0, and a fitted score 7] = 3. Here, o(*) is the
logistic function. The shaded region corresponds to the path integral

[ w-oia-m) i

taken along the straight-line path from the baseline score 7 to the fitted score 7. The horizontal
line indicates the average residual over this path. Multiplying this average residual by the score
contribution 77; of a component yields that componentaAZs contribution to the improvement in
log loss for the observation.

the path from the baseline score to the fitted score.

This mirrors the regression case, where a component’s importance is
governed by its covariance with the fitted signal. In classification, the
analogous object is the alignment between a score component and the
canonical residual y — o(:), integrated along the score path. Score movements
that occur when predicted probabilities are near 0 or 1 contribute little to fit,
because the model is already confident; score movements near the decision
boundary contribute more, because they meaningfully reduce uncertainty.

Figure 1 illustrates the geometry of the decomposition. The canonical
residual y —o(n) varies nonlinearly with the score 1, reflecting the diminishing
marginal value of increasingly confident predictions. The contribution of a
score component is proportional to the area under this residual curve along
the path from the baseline score to the fitted score. The integral therefore
weights score movements by how much predictive uncertainty they resolve,
rather than treating all movements equally.

In logistic regression, where 77; = ijj, this interpretation is especially
transparent: a feature is important if it systematically pushes the score in
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directions that resolve uncertainty across the sample. Large coefficients
attached to rarely informative features contribute little, while modest coeffi-
cients acting where predictions are uncertain can contribute substantially to
model fit.

The decomposition AL = }’; C; is complete in the sense that the contribu-
tions sum exactly to the total improvement in expected log loss. It attributes
model fit at the level of fitted score components and applies to any classifica-
tion model that produces an additive score representation, regardless of how
the fitted probabilities were obtained.

Additivity is assumed on the score scale rather than on the probability
scale. While the logistic link is nonlinear, the fitted score 7 is linear and
homogeneous of degree one in its components. The nonlinearity of the link
affects the form of the residual term through the path integral but does not
alter the additive structure of the decomposition.

Algorithm 1 in appendix D outlines how to compute these contributions

in practice, with the addition of weighted cases.

2.4 Weighted Evaluation
The same decomposition applies when predictive fit is evaluated under a
weighted empirical measure.

Let w; > 0 denote observation weights defining the empirical measure
under which predictive fit is evaluated, and define E,[g] = 2, @; g with
Wi = w;i/),,, Wn. The constant-probability baseline becomes p,, = Ey,[y],
with corresponding score 7j, = 1og(Pw/(1—pw)), and explained fitis measured
by the improvement in weighted expected log loss. Replacing E[-] by Ey[-]
throughout yields an exact additive decomposition of weighted log-loss
improvement.?

Throughout, we interpret weights as defining the metric in which predic-
tive fit is evaluated, not as ad hoc adjustments for class imbalance or cost
sensitivity. This interpretation parallels the role of weights in WLS regression
and ensures that the resulting attributions remain model-conditional and
properly calibrated.

2 In contrast to linear regression, there is no direct analogue of generalized least squares for
Bernoulli outcomes, because binary responses do not admit additive noise with an unrestricted
covariance structure in the same sense as Gaussian regression. As a result, weighting in
classification is naturally interpreted as defining the evaluation metric for predictive fit, rather
than as correcting for correlated errors. Accordingly, all extensions beyond the unweighted case
enter solely through weighted expectations of log loss, in direct analogy with weighted least
squares evaluation in regression.
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2.5 Interpretation and Feature Importance

The contribution C; depends on the magnitude of the score component 7;
and on its alignment with an integrated residual term. The integral averages
the canonical residual y — ¢(-) along the straight-line path on the score scale
from the baseline score to the fitted score. For squared error loss, this path
integral collapses to an endpoint expression because the loss is quadratic.
For log loss, the integral remains, making explicit how nonlinearity affects
attribution while preserving additivity across fitted components.

As in the regression setting, this defines feature importance as a property
of the fitted model rather than of marginal relationships in the data. Measures
based on correlations, mutual information, or univariate classification accu-
racy describe predictive structure present in the data but need not align with
the contribution of a component to the fitted model once other components
are included.

2.6 Specialization to Logistic Regression
In a logistic regression model, the predicted probabilities are obtained from
a fitted score (log odds)

K
p=o@,  T=Po+ ) Bix. (11)
j=1

We evaluate model fit relative to the constant-probability baseline p = E[y],
with baseline score

77:10g(I{?§). (12)

To apply the decomposition, we write the fitted score as a baseline plus
additive components,

K

T=1+ )7 (13)
=1

i = Bjx;, (14)

so that the intercept is absorbed into the baseline. Substituting these compo-
nents into the general decomposition in equation (10) yields the feature-level
attributions C;. By construction, the contributions satisfy AL = Z]K:l Cj.
The baseline score 7] corresponds to the intercept-only model defined by
the unconditional class probability and should be distinguished from the
fitted intercept ,EO of the full logistic regression. When regressors are not
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Table 1: Conceptual classification of feature-importance measures

Method class Object Model fixed Mechanism Scope

Coefficients Pred/score Yes Local sens Global
Perm. / Pert.  Acc/pred No Discrt rem Global
Shapley Pred No Discrtavg ~ Local (agg)
Int Grads Pred Yes Cont path Local
Euler Acc Yes Cont path Global

The table summarizes high-level characteristics of feature importance measures.

centered, Eg # 1, but this distinction has no effect on the decomposition: Any
constant shift in the score cancels in the baseline comparison and therefore
contributes nothing to A.L. Accordingly, the attribution is carried entirely by
the components 7); = ‘Ej xj, regardless of whether regressors are centered.?

In linear regression, a fitted component contributes to explained variance in
proportion to its covariance with the overall fitted signal. In logistic regression,
the analogous object is the covariance between a score component and
unresolved classification uncertainty, as captured by the canonical residual.
The contribution C; is large when the component 7); varies substantially
across observations and tends to move in directions that reduce uncertainty
in the outcome, averaged over the entire range from the baseline prediction to
the fitted prediction. Components that primarily reinforce already confident
predictions or that vary in directions orthogonal to residual uncertainty
contribute little to overall model fit.

3 Relation to Other Feature Importance Measures
A large literature proposes measures of feature importance for classification
models. These measures differ in the object they attribute, predictions,
model performance, or counterfactual behavior, and in whether importance
is defined locally or at the level of the fitted model. Table 1 summarizes the

main characteristics for several of these feature importance measures.

3.1 Coefficient-Based Measures

In parametric classification models such as logistic regression, feature impor-
tance is often assessed using coefficient magnitudes, standardized coefficients,
odds ratios, or associated test statistics. These quantities describe the local
sensitivity of the fitted score or log odds to changes in individual inputs,
holding other inputs fixed.

3 Centering regressors simplifies interpretation by aligning the fitted intercept with the
baseline score and levels the playing field in the presence of regularization, but it is not required
for the validity of the decomposition.
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Coefficient-based measures do not, however, account for the empirical
distribution of the inputs or for how often a feature contributes meaningfully
to prediction in the data. As a result, features with large coefficients but
little variation may have limited impact on predictive fit, while features
with smaller coefficients but substantial variation may be more important
in practice. The decomposition proposed here incorporates both effect size
and realized variation by attributing improvement in log loss using the
fitted score components themselves. Even in correctly specified logistic
regression models, coefficient magnitudes do not decompose global log-
loss improvement and therefore cannot be interpreted as contributions to

predictive fit.

3.2 Perturbation and Permutation Importance
Model-agnostic approaches such as permutation importance and feature
masking assess importance by measuring the deterioration in predictive
performance when a feature is randomly permuted, corrupted, or removed.
These methods are widely used in applied machine learning and provide a
notion of model reliance or robustness rather than contribution within the
fitted model itself Breiman (2001); Fisher, Rudin, and Dominici (2019).

Perturbation-based measures depend on the perturbation scheme, feature
correlations, and the choice of evaluation metric, and they do not yield an
additive decomposition of total model fit.

Interpreted this way, perturbation importance measures how much a
model depends on a feature for producing its predictions, not how that
feature contributes to realized predictive accuracy. In contrast, the present ap-
proach decomposes the fitted model’s log-loss improvement exactly, without
perturbing the data or refitting the model.

3.3 Shapley-Based Attribution Methods

Shapley-value-based methods provide local, observation-level explanations
by averaging marginal contributions over all possible subsets of features. In
the context of machine learning models, these methods are most prominently
associated with SHAP Lundberg and Lee (2017), which adapts the Shapley
value framework Shapley (1953); Lindeman, Merenda, and Gold (1980);
Kruskal (1987) to prediction models.

Shapley-based attributions answer a different question from the one
considered here. They explain how a specific prediction is constructed relative
to a baseline, rather than how global predictive performance is generated.
Aggregating local Shapley values to obtain global feature importance is
possible but requires additional averaging choices and does not generally
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produce an exact decomposition of a population-level fit measure such as
expected log loss.

Shapley values are additive with respect to the chosen value function
V(S), but that value function typically corresponds to counterfactual refit or
feature-removal objectives rather than to realized model fit for a fixed fitted

model.

3.4 Gradient-Based and Local Explanation Methods
Gradient-based attribution methods, including saliency maps and integrated
gradients, assess how predictions change under infinitesimal or path-based
perturbations of the inputs. Integrated gradients Sundararajan, Taly, and Yan
(2017) are among the most widely used approaches in this class and provide
axiomatic guarantees for local attribution of individual predictions.

While these methods also rely on derivatives, their objective differs funda-
mentally from the present one. Gradient-based methods typically quantify
local sensitivity of individual predictions, whereas the decomposition devel-
oped here provides a global, additive attribution of predictive fit.

When applied to individual predictions, integrated gradients explain
sensitivity. Whey applied to model fit, they can be viewed as a numerical
approximation to Euler-style attribution, but only after redefining the value

function to be population-level log loss rather than individual predictions.

3.5 Threshold-Dependent Accuracy Metrics

Feature importance is sometimes assessed using changes in classification
accuracy, AUC, or related threshold-dependent metrics. These measures
depend on arbitrary classification thresholds or ranking behavior and do not
evaluate the quality of predicted probabilities.

Because such metrics are non-additive and do not correspond to proper
scoring rules, they do not support a principled decomposition of model fit.
By working directly with log loss, the present framework avoids threshold
dependence and evaluates probabilistic predictions on the scale at which
classification models are typically estimated and compared.

3.6 Summary

Existing feature importance measures emphasize local sensitivity, robustness
to feature removal, or explanation of individual predictions. The approach
developed here addresses a complementary objective: decomposing a model’s
global predictive fit into additive contributions from components of the fitted
score. By operating directly on log loss and conditioning on the fitted model,
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the decomposition provides a principled and computationally efficient notion
of feature importance aligned with probabilistic classification.

Although alternative approaches could, in principle, be applied to decom-
pose model fit, doing so requires applying them to the log loss of a fixed
fitted model without refitting. Shapley methods are maximally general in
that they require only evaluations of a value function defined on subsets
of features. This generality comes at two costs: substantial computational
complexity and the inability to exploit known structure of the value function,
such as smoothness or derivative information.

Gradient-based methods attempt to incorporate additional structure by us-
ing derivatives to learn about the local shape of the value function. However,
when applied to individual predictions, these methods quantify local sensi-
tivity rather than contribution to global predictive performance. Integrated
gradients applied to model fit can be viewed as a numerical approximation
to Euler-style attribution, trading analytic clarity for generality at increased
computational cost.

From the integral formulation in equation (9), we see that the general
Euler attribution for differentiable models reduces to a one-dimensional line
integral between baseline and fitted models. When analytic solutions are
available, as in regression and classification under log loss, this yields exact,
additive attributions at minimal cost. More generally, numerical evaluation
of this line integral provides a unified approach to attributing predictive fit
across a wide class of models Hentschel (2026a).

4 Conclusion

We have developed a model-level decomposition of predictive fit for binary
classification models that parallels the Euler decomposition of explained
variance in linear regression. By evaluating predictive performance using log
loss and working on the additive score scale, the improvement in expected
log loss relative to a constant-probability baseline admits an exact additive
decomposition across components of the fitted score.

Because log loss is nonlinear in the score, an exact decomposition of global
model fit cannot be obtained from endpoint derivatives alone. Instead, it
requires averaging the canonical residual along the path from the baseline
score to the fitted score. This path-integral formulation provides a natural
generalization of Euler’s theorem beyond homogeneous objectives and yields
additive attributions that depend only on the evaluation metric and the fitted
model, not on the estimation procedure that produced it.
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Specializing the framework to logistic regression, the natural attribution
components are ‘Ej x;, directly mirroring fitted-value decompositions in linear
regression, with the intercept absorbed into the baseline. In this setting,
a feature’s contribution to predictive fit reflects both the magnitude of its
score component and the extent to which it resolves residual classification
uncertainty across the sample.

The resulting notion of feature importance is global and model-conditional:
it attributes realized predictive fit within the fitted model actually used. This
makes it well suited for monitoring, comparison, and diagnostic analysis of
deployed models, where the object of interest is not sensitivity or counterfac-
tual performance, but how predictive accuracy is generated by the model in
operation.

We also derive standard errors for the Euler contributions, allowing formal
assessment of sampling variability. This makes it possible to distinguish
meaningful changes in feature contributions, across samples or over time,
from fluctuations attributable to noise, an essential requirement for practical
monitoring and inference.

More broadly, the integral formulation clarifies that attributing predictive
fit for differentiable models reduces to a one-dimensional path integral
between baseline and fitted predictions. When analytic solutions are available,
as in regression and classification under log loss, this yields closed-form
Euler-style attributions. When they are not, the same framework suggests
a unified numerical approach. This perspective provides a principled and
scalable foundation for feature attribution across a wide class of predictive
models.
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A Euler Decompositions and Path Integrals

This appendix clarifies the relationship between Euler’s theorem for homoge-
neous functions and the path-integral decomposition used in the main text.
The purpose is to show that the latter is the natural generalization of the
former when homogeneity does not hold.

Although the decomposition is expressed in terms of gradients and
integrals, it is not a local or linear approximation. In particular, it does not
rely on a Taylor expansion or on evaluating derivatives at a single point.
The path-integral identity is an exact restatement of the function difference
implied by the fundamental theorem of calculus.

A.1 A Path-Integral Identity for Differentiable Functions

Let f : RK — R be continuously differentiable, and let x, xg € RX be two
points. Consider the straight-line path connecting x to x,

x(f) = xo + t(x — xq), t€[0,1]. (15)
By the chain rule,

d T

2 (®) = Vf(x(t) " (x - x0). (16)
Applying the fundamental theorem of calculus yields the exact identity

1

fx) = flxo) = /O V() (x = xo) dt. 17)
Rewriting the inner product gives an additive decomposition across coordi-
nates,

)= o) = 3t =30 J L 18)

This decomposition is additive because the directional derivative is linear in
the coordinate increments x — xg. The identity requires only differentiability
of f and expresses the change in the function as the sum, over coordinates,
of each coordinate increment multiplied by its average marginal effect along
the path from x to x.
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A.2 Euler's Theorem as a Special Case

Now suppose that f is positively homogeneous of degree one, so that
f(Ax) = Af(x) forall A > 0. (19)

Euler’s theorem states that

K
J
F0= x5k 20)

j=1

This result follows directly from the path-integral identity above. Take
xo = 0and x(¢t) = tx. Then

1
f= 10 = [ Vren e (1)

For a function homogeneous of degree one, the gradient V f(¢x) is homo-
geneous of degree zero and therefore constant along rays. As a result,
Vf(tx) = Vf(x)forall t > 0, and the integrand does not depend on t. Homo-
geneity therefore eliminates the need to average derivatives along the path.
The integral therefore collapses to

1
/ Vi(x) xdt =Vf(x)Tx, (22)
0

which is Euler’s theorem. See Silberberg (1978) or Tasche (2008), for example.

A.3 Interpretation

Euler’s theorem is an endpoint identity for scalar-valued functions that
exploits homogeneity to recover the function value from derivatives evaluated
at a single point. Although the statement involves gradients, it is not a local or
linear approximation and is fundamentally not a multidimensional gradient
expansion. It is an exact identity that reconstructs the function value itself.

When homogeneity does not hold, the appropriate generalization is a
path-integral identity: the change in the function equals the integral of its
directional derivative along a path connecting a baseline to an evaluation
point. The straight-line path we use here treats all components symmetrically
by construction, preserves additivity aligned with the fitted model, and
reduces exactly to Euler’s theorem when homogeneity holds. Alternative
paths introduce ordering or counterfactual structure that is not implied by
the fitted model itself.
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The path-integral decomposition relies not only on differentiability, but
also on the existence of a meaningful baseline and evaluation point. In
predictive modeling, these are provided naturally by the baseline and fitted
models that define explained fit. In the absence of such structure, the
decomposition remains algebraically valid but loses its interpretation as an
attribution of model performance.

The decomposition used in the main text follows this general principle. In
regression, explained signal strength is homogeneous in the fitted signal, and
Euler’s theorem yields an exact endpoint decomposition. In classification,
log loss is not homogeneous in the fitted score, and an exact decomposition
requires averaging derivatives along the score path. Both constructions are
exact, rely only on properties of the evaluation metric, and do not depend on
the estimation procedure that produced the fitted model. The distinction be-
tween endpoint and path identities reflects differences in functional structure
rather than differences in approximation quality.

B Standard Errors

This appendix derives standard errors for the component contributions C;
to explained log loss in binary classification. Throughout, we condition
on the fitted prediction function 7(-) and treat the model as fixed. Under
this conditioning, inference reflects sampling variability in the evaluation
sample we use to compute AL and its decomposition, not uncertainty due to
re-estimation of the model.

The standard errors are useful for assessing whether observed variation
in contributions C; across samples or over time reflects sampling variability
in the evaluation data or meaningful changes in the relevance of individual
prediction components.

B.1 Observation-Level Representation

Recall the log score

fly,n) =yn—log(l+e), (23)

the baseline score 1 = log(p/(1 — p)) implied by p = E[y], and the additive

score representation

K
CEEESI (24)
j=1
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The improvement in fit is
K
AL=E[f(y, M- fy. D] =) C;, (25)
j=1
with component contributions (see equation (9))

1
¢i=2[f [ tv-om+iG-m) |- 29

For log loss, the integral admits the closed form in equation (10). Define the

scalar weight

log(1 + el) — log(1 +e')

= (27)
n-n
interpreting the ratio by continuity as o(77) when 7] = 7. Then the contributions
satisfy
Ci=Elcijl,  cij:=1niw;, (28)

where i indexes observations in the evaluation sample and 7;; denotes the
jth additive score component for observation i.

B.2 Standard Errors for IID Data

Let N denote the size of the evaluation sample. Conditional on the fitted
model, C; is the sample mean of {c; j}fi ;- Under i.i.d. sampling, the standard
error of C; is the standard error of a sample mean,

SE(Cj) = \/%E[(cﬁ -Cy?. (29)

A 100(1 - @)% confidence interval can be reported as C; + z1_,/» SE(C;),
conditional on the fitted model.

B.3 Grouped contributions.

For any group G C {1,..., K} define the grouped score component 7;c =
Yjec Nij and grouped contribution Cg = ¥ je¢ Cj. Then

Cc =Elcicl, CiG := 1ic Wi, (30)
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and the corresponding standard error is

SE(Co) = | = Elfe - o @

Computing SE(C;) and SE(Cg) requires only scalar variances of {c;;} and
{cic} and does not require estimating a full K X K covariance matrix.

B.4 Notes and Extensions

Because we decompose the fit of a given model and condition on the fitted
score function 7)(-), the same formulas apply in-sample and out-of-sample.
The only difference is the evaluation sample used to form {c;;} and its size N.

In logistic regression, the fitted score components take the parametric
form 7;; = ijij (with the intercept absorbed into 7 as in the main text).
Substituting these components into equation (28) yields

cij = Bjxipwi,  Cj=E[Bxi)wil, (32)

and the standard errors remain equations (29) and (31). No additional
adjustment is required: the derivation depends only on the evaluation metric
and the fitted scores, not on the estimation procedure used to obtain E

If the evaluation sample exhibits heteroskedasticity or serial dependence,
the ii.d. variance estimators in equations (29) and (31) can be replaced
by heteroskedasticity- or autocorrelation-consistent (HAC) estimators ap-
plied to the sequences {c;;} or {cic}. The observation-level representation
equation (28) remains valid.

C Multinomial Classification

This appendix shows that the attribution framework developed in the main
text extends mechanically from binary to multinomial classification models.
The extension introduces no new attribution principle. Instead, it makes
explicit how the same path-integral and Euler logic applies to softmax models
once the geometry of the multinomial log loss is written out carefully.

The main text follows convention and defines explained fit as the improve-
ment in expected log loss relative to a baseline. However, the improvement in
log loss also has an exact quadratic representation along the score path. That
representation exposes the geometry underlying the Euler decomposition
and allows natural generalization to the multinomial case.
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C.1 Binary Classification: Exact Quadratic Representation

We begin with binary outcomes y € {0,1} and probabilistic predictions
p = a(s), where s € R denotes the fitted score (log odds). Define the log score

fy,8)=ys—1(s),  ¢(s) =log(l+e’), (33)

so that the log loss satisfies (v, p) = — f(y, s).

Let p = E[y] denote the unconditional class probability and define the
corresponding baseline score

50 = 10g(%) . (34)
By construction,

P (s0) = o(s0) = p = E[y]. (35)

The improvement in expected log loss relative to the baseline is

A£=E[f(y/5)—f(]/,50)] (36)
= E[y(s - so)] = (¥(s) — ¢(s0)). (37)

Using E[y] = ¢’(sp), this can be written exactly as

AL =1(s) = P(s0) = P’ (s50)(s — s0)- (38)

To express this quantity in quadratic form, define the straight-line path in
score space

s(t) = sg + t(s — sp), t €10,1]. 39)

Taylor’s theorem with integral remainder yields the exact identity
1
96s) = pls0) — s —s0) = [ A==y st} @0)

For the Bernoulli log-partition function,

Y (s) = a(s)(1 - a(s)). (A1)
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Define the path-integrated curvature weight

1
Wi =2 [ (1= )0(50)) (1= ofs0) . @)

With this definition, the improvement in expected log loss admits the exact
quadratic representation

1
AL = E(S - SO)zwpath- (43)

This representation shows that explained fit in binary classification is
a homogeneous quadratic function of the score displacement s — s, with
curvature determined by a path-averaged second derivative of the log-
partition function.

C.2 Multinomial Logit Model

Now consider a classification problem with K > 2 classes. Let pi(x) denote
the predicted probability of class k, and choose class K as a reference category.
The quadratic representation allows a direct extension from one dimension
to K — 1 dimensions using standard vector notation.

Define the (K — 1)-dimensional logit vector

s1(x)
s(x) = |, sk(x)=log

sk-1(x)

pr(x)
px(x)

. (44)

The binary case corresponds to K = 2, in which case s(x) is scalar.
Let so denote the baseline logit vector corresponding to the baseline
probability vector p.

C.3 Multinomial Log Loss and Its Derivatives

For a single observation y € {1,. .., K}, the multinomial log score is
K-1
fly,s)=sy—1(s), Y(s) = log(l + Z esk) , (45)
k=1

where class K is absorbed into the normalization.

The improvement in expected log loss relative to the baseline is

AL =E[f(y,s) - f(y,50)] = ¢(s) — ¥(s0) = Vih(50)" (5 — s0), (46)
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where Vi) (so) equals the baseline class-probability vector p (excluding the
reference category).

The straight-line path in logit space is
s(t) = so + t(s — sg), t €1[0,1]. (47)

Applying Taylor’s theorem with integral remainder in RX~! yields the
exact identity

1
AL = /0 (1= 1) (s = 50) VZy(s() (s = so) dt. (48)

C.4 Fisher Information Interpretation

The Hessian of the multinomial log-partition function is

V2y(s) = diag(p(s)) — p(s)p(s)”, (49)

where p(s) € RK=! denotes the vector of predicted probabilities for the non-
reference classes implied by s. This matrix equals the Fisher information

matrix of the multinomial model evaluated at p(s).

Define the path-integrated Fisher metric

1
Wpatn = 2/ (1—1t)V2(s(t)) dt. (50)
0
With this definition,
1
AL =35(s - 50)" Wyatn(s = s0),  IIs = sollw,.. = V2AL. (61)

Thus, as in the binary case, explained fit admits an exact quadratic
representation in the displacement of the fitted signal from the baseline, with
curvature given by a path-integrated Fisher metric.

C.5 Additive Signal Representation

Suppose the fitted logit vector admits an additive decomposition

s(x)—sp = sV(x), (52)

14
j=1

where s)(x) denotes the contribution of feature j to the fitted signal.
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For linear multinomial logit models this decomposition is literal. For
nonlinear models, it may be obtained via a path-integral representation of
the Jacobian of s(x), as discussed in the main text.

No assumption beyond additivity of the fitted signal is required; the
decomposition concerns the fitted object itself and does not depend on the

estimation procedure.

C.6 Euler Decomposition of Multinomial Signal Strength

Because [|s = so[lw,,,,, is positively homogeneous of degree one in s — s, Euler’s

ath

theorem yields the exact decomposition

P (s — 0,5,
_ _ 4 path T
lls = sollw,.., = ]z:; T —solm Sl (a,byw =a"Whb. (53)

Each term represents the contribution of feature j to overall signal strength,
measured in the geometry induced by the multinomial log-likelihood.

Thus, multinomial classification introduces no new attribution logic be-
yond that already present in the binary case. It replaces scalar quantities
with their vector-valued analogues under the same path-integrated quadratic
signal geometry.

Implementation of the multinomial case follows the same structure as the
algorithm in appendix D, replacing scalar quantities with their vector-valued
analogues and evaluating the path-integrated Fisher metric numerically when
a closed form is unavailable.

C.7 Standard Errors

The standard-error calculations for multinomial classification follow the
same logic as in the binary case. Throughout, we condition on the fitted
score function s(-) and treat it as fixed. Inference therefore reflects sampling
variability in the evaluation sample, not uncertainty due to re-estimation of
the model.

For each observation i, define the observation-level contribution

()
<Si — 50, S,'/ >meh,i

llsi — SOHWputh,i

cij = , (54)

where W1, denotes the path-integrated Fisher metric evaluated at observa-
tion i. The population contribution satisfies

Cj = Elci], (55)



Decomposition Algorithm 23

where expectations are taken over the evaluation sample.
Under i.i.d. sampling, the standard error of C; is the standard error of a
sample mean,

SE(C)) = 3¢ Bl(cis - G2l 56)

As in regression and binary classification, computing these standard errors
requires only scalar variances of the observation-level contributions and does
not require estimation of a full covariance matrix across features.

The same logic applies to grouped contributions obtained by summing c;;
across features.

D Decomposition Algorithm

This appendix contains the algorithm for computing exact Euler-like contri-
butions to classification signal strength.

Algorithm 1: Feature importance for binary classification under log loss

# This algorithm computes exact Euler-style contributions under log
loss,
# along with vanilla (i.i.d.) standard errors under the same

evaluation weights.

#

# Inputs:

#y : (N,) vector with y in {0,1}

# Eta_hat : (N, K) matrix of fitted score components

# with eta = eta_bar + sum_j Eta_hat[:, j]

#w : optional (N,) nonnegative observation weights defining the
# evaluation metric (default: uniform weights)

#

# Notes:

# - For logistic regression, Eta_hat[:,j] = X[:,j] * beta[j].
# - Weights define the empirical measure used to evaluate fit

(analogous to

3

WLS/GLS metrics), not ad hoc class rebalancing. All expectations

below are

# computed under these weights.

# - The baseline p_bar is the best constant predictor under the same
weights.

# - For non-uniform weights, standard errors use the effective sample

size

# N_eff =1 / sum_i wtil_iA2, where wtil are normalized weights.
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# Helper functions

sigmoid(z) = 1 / (1 + exp(-z))

softplus(z) = log(l + exp(z)) # implement stably if needed
logloss(y,p)= - y*log(p) - (1-y)*log(l-p)

# Dimensions
N, K = Eta_hat.shape

# Weighted mean helper (normalizes weights)
if w is None:
w = ones(N)
w_sum = sum(w)
wtil = w / w_sum

wmean(a) = sum(wtil * a)

# Effective sample size under normalized weights
N_eff = 1.0 / sum(wtil**2)

# Baseline probability and baseline score (intercept-only, weighted)
p_bar = wmean(y)

eta_bar = log(p_bar / (1 - p_bar))

# Aggregate fitted score and fitted probabilities
eta = eta_bar + Eta_hat.sum(axis=1)

p = sigmoid(eta)

# Baseline and fitted log loss (fit improvement, weighted)
L_bar = wmean(logloss(y, p_bar))

L_hat = wmean(logloss(y, p))

Deltal = L_bar - L_hat

# Closed-form path weight under log loss:

# w_ir{path} = y_i - ( softplus(eta_i) - softplus(eta_bar) ) /
delta_i,

# with the limit w_iA{path} -> y_i - sigmoid(eta_bar) as delta_i -> 0.

delta = eta - eta_bar

sp_eta = softplus(eta) # (N,)

sp_eta_bar = softplus(eta_bar) # scalar

eps = le-12
w_path = zeros(N)
mask = abs(delta) > eps
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w_path[mask] = y[mask] - (sp_eta[mask] - sp_eta_bar) / delta[mask]
w_path[~mask]= y[~mask] - sigmoid(eta_bar)

# Observation-level contributions and component contributions

(weighted)
# c_ij = Eta_hat[i,j] * w_path[i], C[j] = E_w[c_ij]
c = Eta_hat * w_path[:,None] # (N, K)
C = sum(wtil[:,None] * c, axis=0) # (K,)

# Plain (i.i.d.) standard errors for contributions under the same

weights

# Var_w(c_j) = E_w[(c_ij - C[j1)*2], SE(C_j) = sqrt( Var_w(c_j) /
N_eff )

var_w = sum(wtil[:,None] * (c - C[None,:])**2, axis=0) # (K,)

SE = sqrt(var_w / N_eff) # (K,)

# Output:

# C satisfies sum_j C[j] = Deltal exactly (up to floating-point error)
# SE are vanilla standard errors under the evaluation weights

# Proportional importance: C / sum(C) = C / Deltal
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